
sphinx-test Documentation
Release 0.01

Ramnath Vaidyanathan

May 20, 2015

Contents

1 First Steps with Sphinx 3
1.1 Setting up the documentation sources . 3

2 Using Pandoc and knitR with Sphinx 5

3 Statistical Computing Seminars 7
3.1 Graphics systems in R . 7
3.2 Graphs covered . 7
3.3 Box Plots . 8
3.4 Histograms . 8
3.5 Density plots . 9
3.6 Plots of functions and complex text . 10
3.7 Scatter plots . 10
3.8 Bar plots . 11
3.9 Piecharts . 12
3.10 Summary . 12

4 Types of smooths 13

5 Summary 17

6 Indices and tables 19

i

ii

sphinx-test Documentation, Release 0.01

Contents:

Contents 1

sphinx-test Documentation, Release 0.01

2 Contents

CHAPTER 1

First Steps with Sphinx

This document is meant to give a tutorial-like overview of all common tasks while using Sphinx.

The green arrows designate “more info” links leading to advanced sections about the described task.

1.1 Setting up the documentation sources

Author Ramnath Vaidyanathan

University McGill University

The root directory of a documentation collection is called the source directory. This directory also contains the Sphinx
configuration file conf.py, where you can configure all aspects of how Sphinx reads your sources and builds your
documentation.

Sphinx comes with a script called sphinx-quickstart that sets up a source directory and creates a default conf.py with
the most useful configuration values from a few questions it asks you. Just run

$ sphinx-quickstart

and answer its questions. (Be sure to say yes to the “autodoc” extension.)

library(ggplot2)
qplot(wt, mpg, data = mtcars)

theme_to_header_html <- function(theme){
css_file = if (file.exists(theme)) theme else {
system.file("themes", sprintf("%s.css", theme), package = "knitr")

}
css_knitr = system.file('themes', '.knitr.css', package = 'knitr')
css_knitr <- '~/Desktop/R_Projects/knitr/inst/themes/.knitr.css'
stringr::str_c(c(
'<style type="text/css">',
readLines(css_knitr),
readLines(css_file),
'</style>'),

collapse = '\n')
}

Note: The default role (‘content‘) has no special meaning by default. You are free to use it for anything you like,
e.g. variable names; use the :confval:‘default_role‘ config value to set it to a known role.

3

sphinx-test Documentation, Release 0.01

Another way to highlight code is to doe the following:

library(ggplot2)
qplot(wt, mpg, data = mtcars)
theme_to_header_html <- function(theme){
css_file = if (file.exists(theme)) theme else {
system.file("themes", sprintf("%s.css", theme), package = "knitr")

}
css_knitr = system.file('themes', '.knitr.css', package = 'knitr')
css_knitr <- '~/Desktop/R_Projects/knitr/inst/themes/.knitr.css'
stringr::str_c(c(
'<style type="text/css">',
readLines(css_knitr),
readLines(css_file),
'</style>'),

collapse = '\n')
}

See also:

This is a simple seealso note. Other inline directive may be included (e.g., math 𝛼) but not al of them.

𝑦 = 𝑎𝑥2 + 𝑏𝑥+ 𝑐 (1.1)
𝑓(𝑥) = 𝑥2 + 2𝑥𝑦 + 𝑦2 (1.2)

We can define our hypothesis as 𝐻0 : 𝜇 = 𝜇0, 𝐻𝑎 : 𝜇 = 𝜇𝑎

4 Chapter 1. First Steps with Sphinx

CHAPTER 2

Using Pandoc and knitR with Sphinx

This is a short example illustrating how to use knitr with pandoc to write a single document in markdown and
have it rendered in multiple formats, especially pdf and html. For the purposes of illustration, I have chosen two
code chunks, one generating a plot and the other generating a table to illustrate the power of pandoc + knitr.

We first need to tell knitr to render the output of code chunks in the gfm format, which pandoc will understand.

The chunk below is a plot chunk. You need to have the package ggplot2 installed for it to work.

library(ggplot2)
qplot(wt, mpg, data = mtcars)

The second chunk produces a table. You need to have the package ascii installed for this to work.

library(ascii)
x <- head(mtcars[, 1:5])
options(asciiType = "pandoc")
ascii(x)

mpg cyl disp hp drat
Mazda RX4 21.00 6.00 160.00 110.00 3.90
Mazda RX4 Wag 21.00 6.00 160.00 110.00 3.90
Datsun 710 22.80 4.00 108.00 93.00 3.85
Hornet 4 Drive 21.40 6.00 258.00 110.00 3.08
Hornet Sportabout 18.70 8.00 360.00 175.00 3.15
Valiant 18.10 6.00 225.00 105.00 2.76

5

sphinx-test Documentation, Release 0.01

Fig. 2.1: plot of chunk plot-chunk

6 Chapter 2. Using Pandoc and knitR with Sphinx

CHAPTER 3

Statistical Computing Seminars

R is often praised for its graphics. I think R is good at graphics for the same reason it is good at anything else—it’s
flexible. People just like to customize graphs more than they like to customize statistical models. But as my old boss
used to say, “there is no free lunch”. R is powerful and flexible but using it takes time. R is, strictly speaking, not
a statistical package; it is a language and environment for statistical computing. Finally, a word of advice, you will
have a lot more fun if you start playing around with R when you do not need it then if you start when you need to
accomplish task X by some deadline.

3.1 Graphics systems in R

Many people have outlined the differents graphics systems in R. What follows is not entirely accurate, but hopefully
is a useful way to think.

Traditional (“base”) Graphics

Grid Graphics

• lattice: implementation of trellis plots (William Cleveland)

• ggplot2: implementatioon of the Grammar of Graphics (Leland Wilkinson)

Other-useful-but-less-common-or-mainstream stuff

This seminar focuses on traditional graphics. It is part of a series that covers traditional, ggplot2, and lattice.

3.2 Graphs covered

This page covers a few basic graphs:

• Box Plots

• Histograms

• Density Plots

• Plots of Functions and Complex Text

• Scatter Plots

• *Bar Plots*

• *Piecharts*

7

sphinx-test Documentation, Release 0.01

I put bar plots and piecharts in italics and at the end because I belive they are overused and generally inefficient at
communicating data.

3.3 Box Plots

Precise implementations vary, but essentially box plots have a box with the top being the upper quartile, the bottom
being the lower quartile, a line for the median somehwere inside the box, and “whiskers” extending the range of the
data. R also has the option to add “notches”, these are based off the interquartile range (IQR) and are meant to be
somewhat like a confidence interval around the medians. We will work with a simulated data set.

set.seed(1) # so this is reproducible
data frame with variable, xn ~N(0, 1)
d <- data.frame(xn = rnorm(1000, mean = 0, sd = 1))

basic boxplot---looks nice
boxplot(d$xn)

with the notch
boxplot(d$xn, notch = TRUE)

We can see that there are a few “outliers” (the points beyond the whiskers of the boxplot), but given normal data, it
looks very nice. Next we will look at a binomial distribution with 5 trials (like an in class pop quiz, with 5 true/false
questions). We also add a variable, attend, that indicates whether students attended the last class.

d$attend <- factor(rep(0:1, each = 500), labels = c("absent",
"present"))

set seed to make reproducible and add to boxplot
set.seed(1)
xb (first 500) ~ B(5, .5) and xb (last 500) ~ B(5,
.8)
d$xb <- c(rbinom(500, 5, 0.5), rbinom(500, 5,

0.8))

notched box plot as before
boxplot(d$xb, notch = TRUE)

we can also use a formula interface to get separate
plots by attendance
boxplot(xb ~ attend, data = d)

3.4 Histograms

Box plots are nice and show at least 5 pieces of information for each variable, but it is not always easy to tell the
distribution of a variable from them. To look at distributions, we can try a histogram. Histograms bin data by counting
the number of observations falling within a certain range, and present the frequency (or probability).

basic histogram
hist(d$xn)

increase the number of bins (increases resolution)
hist(d$xn, breaks = 25)

Instead of plotting the frequencies, we can plot the probabilities. We will also give it better labels. Greek letters (mu
and sigma) can be added by placing them in an expression(). This works for titles, axis labels, and text directly added

8 Chapter 3. Statistical Computing Seminars

sphinx-test Documentation, Release 0.01

to plots.

hist(d$xn, breaks = 25, prob = TRUE, main = expression(paste("Histogram of ~N(",
mu, "=0, ", sigma, "=1)")), xlab = "X")

Now examining the 'quiz' data
hist(d$xb, main = "Pop Quiz Results", xlab = "Number Correct")

Looking at the histogram, 290 students got 4/5 questions correct.

3.5 Density plots

Density plots are great to follow histograms because you can actually plot them right on top of a histogram if it is of
porbabilities instead of frequencies. Density plots use a smoothing kernel (typically gaussian).

default density plot
plot(density(d$xn))

plot a histogram and add density plot on top
setting a smaller bandwidth (.1) than before
makes it more 'jagged'
hist(d$xn, breaks = 30, prob = TRUE)
lines(density(d$xn, bw = 0.1))

bandwidth of .4
hist(d$xn, breaks = 30, prob = TRUE)
lines(density(d$xn, bw = 0.4))

The bandwidths determine the degree of smoothing being done. Higher bandwidths will be “less true” to the data, but
creating smoother density plots. Next we show the quiz data and also demonstrate the use of the with function, to
avoid having to keep typing the dataset name.

with(d, {
hist(xb, breaks = 30, prob = TRUE, main = "Histogram of Quiz Scores",

xlab = "Number of Questions Correct")
lines(density(xb, bw = 0.2), lwd = 2, lty = 1)
lines(density(xb, bw = 1), lwd = 2, lty = 2)

})

With discrete data like this, the smoothing is not very effective as it does little to help us understand the data. The
trend is better shown with just the bars. To end our demonstrations of graphs for distributions, we will add a “rug”
to the histograms and density plots. The rug is simply a verticle line for every observation—very true to the data, but
imposible to see multiple observations with the same value. The rug is nice to get insight about the more rare values
in the extremes.

with(d, {
hist(xn, prob = TRUE, main = "Histogram with Density and Rug")
lines(density(xn, bw = 0.1), lwd = 2, lty = 1)
lines(density(xn, bw = 0.5), lwd = 2, lty = 2)
rug(xn)

})

3.5. Density plots 9

sphinx-test Documentation, Release 0.01

3.6 Plots of functions and complex text

Sometimes it is nice to plot a function directly. Particular for instructional purposes. Using the curve function in R,
you can plot arbitrary functions evaluated over a range of values, as long as the function takes a vector, x, and returns
a vector the same length as x. Two common examples in statistics are probability density functions and cumulative
distribution functions. When you are plotting a function, it also makes sense to show the formula being plotted. This
section shows how to plot functions and how to add complex text (formulae) to a plot.

The builtin function dnorm is plotted from -3 to 3. The interesting part is adding the text. The first argument is
the location on the x axis, the second the location on the y axis. Next is the text to be plotted. In this case, it is an
expression. Plotting math in R is similar to using LaTeX. frac takes two arguments, the first is the top of the fraction,
the second is the bottom. Greek letter names are automatically converted to their symbol form. Finally, the text is
made 1.2 times bigger using the cex (character expansion) argument.

plot the function from -3 to 3
curve(dnorm, from = -3, to = 3, n = 1000, xlab = "x",

ylab = expression(P(x)), main = "Normal Probability Density Function")
add the formula to the plot
text(-2, 0.3, expression(P(x) == paste(frac(1,

sqrt(2 * pi * sigma^2)), " ", e^{
frac(-(x - mu)^2, 2 * sigma^2)

})), cex = 1.2)

Here is another example where we first define a function to plot the cumulative percent of normal density of x. This is
used in curve to create the plot. This formula demonstrates how to add infinity as well as integrals.

define the function
normCDF <- function(x) {

x <- dnorm(x)
cumsum(x)/sum(x)

}
plot the function from -3 to 3
curve(normCDF, from = -3, to = 3, n = 1000, type = "l",

col = "blue", xlab = "x", ylab = expression(phi(x)),
main = "Standard Normal Cumulative Distribution Function")

add the formula to the plot
text(-1.5, 0.7, expression(phi(x) == paste(frac(1,

sqrt(2 * pi)), " ", integral(e^(-t^2/2) * dt, -infinity,
x))), cex = 1.2)

3.7 Scatter plots

Scatter plots may be the most common way to plot the relationship between two variables. In R, scatter plots are made
using the plot function, which has a lot of options. We will only scratch the surface now, but you can find out more
from the documentation, ?plot and ?plot.default.

what happens if you only plot one variable?
plot(d$xn) # index on the x axis

create some data correlated with xn
set.seed(2)
d$xnr <- 0.4 * d$xn + rnorm(1000, 0, 1)
plot(x = d$xn, y = d$xnr)

10 Chapter 3. Statistical Computing Seminars

sphinx-test Documentation, Release 0.01

Up until now, we have not really made too many changes to the default settings. Now we will show many different
ways to customize graphs. Although these are shown for scatter plots, many of the same arguments can be used for
other plotting functions. The pch argument adjusts the p**lotting **ch**character. The **col**our argument
adjusts the point colour. **xlim**its controls the lower and upper limit of the X axis (often +/- a twiddle value).
xlabel sets the label for the X axis. **xaxt controls the style or turns off (n) the X **ax**is **t**icks.

plot(x = d$xn, y = d$xnr, pch = 18, col = "blue",
xlim = c(-4, 4), ylim = c(-2, 2), xlab = "Variable 1",
ylab = "Variable 2", main = "The Main Plot Title", sub = "A Subtitle",
xaxt = "n", yaxt = "n")

Arguments that accept single values (e.g., pch) also often accept vectors that are the same length as the data. We can
take advantage of this to adjust the plotting character and colour depending on attendance. The trick is to convert the
“absent”, “present” data into numbers for the plotting character and colours. There are many ways to accomplish this.
ifelse is one way. Attend is a factor and its levels are automatically used to select two colours (by default black and
then red). We also show how this can be customized in various ways.

with attend default colour
with(d, plot(x = xn, y = xnr, pch = ifelse(attend ==

"absent", 18, 17), col = attend))

customizing
with(d, plot(x = xn, y = xnr, pch = ifelse(attend ==

"absent", 18, 17), col = rainbow(2)[attend]))

customizing
with(d, plot(x = xn, y = xnr, pch = ifelse(attend ==

"absent", 18, 17), col = heat.colors(2)[attend]))

customizing
with(d, plot(x = xn, y = xnr, pch = ifelse(attend ==

"absent", 18, 17), col = ifelse(attend == "absent", "blue",
"black")))

3.8 Bar plots

Bar plots, are typically information impoverished. They use a lot of space to present a few values, probably easier to
report exactly in a table or in text. Most often, barplots are anchored at 0, and the height of the bar indicates the mean
of a variable.

first example
barplot(mean(d$xb), ylab = "Quiz Grade", xlab = "Overall Class")

mean broken down by attendance
g <- tapply(dxb, dattend, FUN = mean)
now create the bar plot
barplot(g, ylim = c(0, 5))

What do these graphs really tell us? Just that the mean of the absent group is 2.47 and the mean of the present group
is 3.958. An equivalent presentation would be:

cex (character expansion) makes the points larger
plot(x = g, pch = 18, cex = 2, ylim = c(0, 5))

3.8. Bar plots 11

sphinx-test Documentation, Release 0.01

Without all the pointless shading for the bars (remember, only the tops of the bars convey information), the plot looks
sparse. What are the alternatives? Well, for one, the boxplots we looked at earlier. Alternately, plot the real points
and add the means. Because the outcome is discrete, we use jitter to add a some noise to get a better sense of the
distribution.

with(d, {
plot(jitter(as.numeric(attend)), xb, xaxt = "n", col = "blue",

xlab = "Attendance", ylab = "Quiz Score")
points(x = c(1, 2), y = g, col = "black", pch = 18, cex = 4)
axis(1, at = c(1, 2), labels = names(g))

})

This is probably not the visual display I would choose for these data, but at least you can see not only the means, but
that there are people in the absent group who score 5 and people in the present that score 0, etc. Along the way, we
used the points function to add points (the means) on top of an existing plot and added our own X axis to get the labels
we wanted.

3.9 Piecharts

Pie charts are another problematic type of graph. Why? The human perceptual system is lousy at accurately quantify-
ing area.

g <- 1:4
names(g) <- letters[1:4]
How are a, b, c, d growing?
pie(g)

barplot(g)

Our visual systems are able to detect small differences in lengths of lines, and we can quickly see from the bars that
the difference between each bar is about equal. Similarly, in the graphs below, it is easy to tell that “b” is twice as high
as “a”, but difficult to tell “b” has twice the area of “a”.

pie(c(a = 2, b = 4))

barplot(c(a = 2, b = 4))

3.10 Summary

We looked at how to make plots in R using boxplot, hist, density, plot, barplot, pie, as wella s how to customize the
colours, shapes, and labels. We briefly saw how to set our own axes. The next installment of this series will explore
how to really customize plots from tweaking aspects of one plot like adding a legend to including multiple subplots in
one bigger plot.

Built on: 2012-03-20 Under: R Under development (unstable) (2012-02-22
r58461) With: knitr 0.4

R FAQ How can I explore different smooths in ggplot2? ~~~

12 Chapter 3. Statistical Computing Seminars

CHAPTER 4

Types of smooths

Although points and lines of raw data can be helpful for exploring and understanding data, it can be difficult to tell
what the overall trend or patterns are. Adding data summaries can make it much easier to see. When working with
two or more variables, rather than raw summaries such as means, we can use conditional means or expected values of
one variable based on some model. To demonstrate this, we will use a data set that is built into R, the ‘mtcars‘ data.
Specifically, we will look at the relationship between miles per gallon (mpg) and horsepower (hp). in 32 different
cars.

head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

require(ggplot2)
require(methods)
p <- ggplot(mtcars, aes(x = hp, y = mpg)) + geom_point()
print(p)

Fig. 4.1: plot of chunk mtcars

One thing to notice is that into the ‘p‘ object, we saved both the basic plot setup and the request to add points. This
saves typing down the road if we know we always want points plotted in our graph. A quick visual of the data indicates
the relationship may not be linear. This is confirmed when we look at a linear smooth. The fit is poor at the extremes.

p + stat_smooth(method = "lm", formula = y ~ x,
size = 1)

Fig. 4.2: plot of chunk linear-fit

To get a sense of something like the mean miles per gallon at every level of horsepower, we can instead use a locally
weighted regression.

p + stat_smooth(method = "loess", formula = y ~
x, size = 1)

Looking at the fit, it seems a quadratic function might be a good approximation. We can go back to a linear model, but
change the formula to include a squared term for x (which is horse power here).

13

sphinx-test Documentation, Release 0.01

Fig. 4.3: plot of chunk local-wt-reg

p + stat_smooth(method = "lm", formula = y ~ x +
I(x^2), size = 1)

Fig. 4.4: plot of chunk quad-fun-approx

We could achieve the same results using orthogonal polynomials, in this case with a second order (quadratic) polyno-
mial. The advantage is that the poly() function can easily fit polynomials of arbitrary degree

p + stat_smooth(method = "lm", formula = y ~ poly(x,
2), size = 1)

Fig. 4.5: plot of chunk polynomial-fit

Another flexible aspect of the smooths is that it can use many different modelling functions as long as they follow
some common conventions. This opens up access to many R packages to fit very specialized models. For the sake
of demonstration, we will try a generalized additive model (GAM) from the ‘mgcv‘ package with a smooth on the x
predictor variable. First we load the required package, and then show how it is easily used inside our graph.

require(mgcv)
p + stat_smooth(method = "gam", formula = y ~

s(x), size = 1)

The GAM with a smooth seems to fit the data better than the straight line did. We could also customize the basis
dimension. Arbitrarily, we choose 3.

p + stat_smooth(method = "gam", formula = y ~
s(x, k = 3), size = 1)

If we wanted to directly compare, we could add multiple smooths and colour them to see which we like best. By
default each smooth would include shaded standard errors, which would be messy so we turn them off.

p + stat_smooth(method = "lm", formula = y ~ x,
size = 1, se = FALSE, colour = "black") + stat_smooth(method = "lm",
formula = y ~ x + I(x^2), size = 1, se = FALSE, colour = "blue") +
stat_smooth(method = "loess", formula = y ~ x, size = 1,

se = FALSE, colour = "red") + stat_smooth(method = "gam",
formula = y ~ s(x), size = 1, se = FALSE, colour = "green") +
stat_smooth(method = "gam", formula = y ~ s(x, k = 3),

size = 1, se = FALSE, colour = "violet")

It is clear in this case that all the models except the strictly linear fit the data similarly. To distinguish which was “best”
any further would likely require comparing model fit statistics.

Smooths can also be fit separately by levels of another variable. This allows a sort of examination of ‘interactions’ in
the data.

ggplot(mtcars, aes(x = hp, y = mpg, colour = factor(vs))) +
geom_point() + stat_smooth(method = "lm", formula = y ~
x, se = FALSE)

ggplot(mtcars, aes(x = hp, y = mpg, colour = factor(vs))) +
geom_point() + stat_smooth(aes(group = 1), method = "lm",
formula = y ~ x, se = FALSE)

14 Chapter 4. Types of smooths

sphinx-test Documentation, Release 0.01

Fig. 4.6: plot of chunk gams

Fig. 4.7: plot of chunk custom-gam

ggplot(mtcars, aes(x = hp, y = mpg)) + geom_point(aes(colour = factor(vs))) +
stat_smooth(method = "lm", formula = y ~ x, se = FALSE)

Fig. 4.8: plot of chunk multiple-smooths

15

sphinx-test Documentation, Release 0.01

Fig. 4.9: plot of chunk by-levels

Fig. 4.10: plot of chunk by-levels

Fig. 4.11: plot of chunk by-levels

16 Chapter 4. Types of smooths

CHAPTER 5

Summary

Smoothed, conditional summaries are easy to add to plots in ggplot2. This makes it easy to see overall trends and
explore visually how different models fit the data. Many of the examples were redundant or clearly a poor choice for
this particular data; the purpose was to demonstrate the capabilities of ggplot2 and show what options are available.
Each example may be more or less appropriate for exploring a particular set of data.

17

sphinx-test Documentation, Release 0.01

18 Chapter 5. Summary

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

19

	First Steps with Sphinx
	Setting up the documentation sources

	Using Pandoc and knitR with Sphinx
	Statistical Computing Seminars
	Graphics systems in R
	Graphs covered
	Box Plots
	Histograms
	Density plots
	Plots of functions and complex text
	Scatter plots
	Bar plots
	Piecharts
	Summary

	Types of smooths
	Summary
	Indices and tables

